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Abbott and Costello are a comedy duo active in the 1940’s, who are most
famous for their comedy bit “Who’s on First?” in which the two comedians
discuss baseball players with strange names and explore the depths of semantic
ambiguity. However, this is far from their only routine. In another exploration
of logical ambiguity and absurdity, their second most famous comedy bit! is a
routine in which Lou Costello proves to Bud Abbott that 7 x 13 = 28 using
erroneous versions of long division, multiplication, and addition [1]. We were
most interested in the part of the routine that involves long division, which went
as follows.

0.1 Costello’s First Proof that 7 x 13 = 28

Costello sets up his proof as long division of 28 by 7, intending to get a quo-
tient of 13. Costello begins to write his proof on the (conveniently supplied)
chalkboard as follows.?

7)28

Costello then begins the process of long division as usual, by first asking,
“Does seven go into two?” Clearly, seven does not divide two, so Costello sets
the two aside for later.
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LA bit that the first author came across on YouTube while they were supposed to be
working on their group theory homework.

2Costello actually uses a different notation for long division, but we have chosen to use
more familiar notation to not add additional confusion for the reader.




Costello, unfazed, then continues the process of long division with the next
digit,? asking “Does 7 go into 8?” In this case, 7 goes into 8 once, so Costello
puts a 1 in our quotient, and subtracts 7 x 1 = 7 from 8.
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With this subtraction complete, Costello then points out that our division
is not finished, since we still haven’t used that 2 that we put aside earlier. To
amend this, Costello very sensibly places the 2 into the remainder alongside the
1 that was put there from our most recent subtraction, which appears as follows.
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With a newfound 21 in our remainder, Costello continues the process, this
time applying the long division process to our remainder rather than any re-
maining digits in our dividend. Costello asks a third and final time, “Does 7 go
into 217” Which it does, three times. Costello thus puts a 3 into the quotient,
and subtracts 7 x 3 = 21 from our remainder-turned-dividend.
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With a 0 in the remainder, and no further digits to divide, Costello concludes
the division process with a 13 as the quotient. O

A careful reader will note that Costello’s proof is not consistent with modern-
day rules of arithmetic: 28 =7 = 4, not 13. Costello’s second and third proofs
are equally dubious, but each “proves” in some way that 7 x 13 = 28.

1 From comedy to mathematical research

This bit by Abbott and Costello isn’t just performed in one film; this bit appears
in films by the duo as early as 1941—like in the film “In The Navy” [2]—but the

3You may notice that this step is poorly justified (nonsensical, even), and that he should
instead be considering if 7 goes into 28, rather than just 8.



routine also shows up in later films. However, we noticed something curious:
despite the number of different films the routine is performed in, the numbers
are never changed. Costello always does this proof with the numbers 7,13, and
28. So the question arises: why are these numbers special? What is it about
these values makes this process “work” in some sense? What other numbers
could Abbott and Costello have used?

In order to address these questions, we must first decide how to appropri-
ately generalize Costello’s version of division to other pairs of integers. This is
not a simple thing to do, since Costello’s example is quite restrictive in the ex-
amples we can quickly adapt to. This leaves us with a number of questions with
ambiguous answers: What happens if the first digit of our dividend is greater
than our divisor? What happens if we have a three or more digit dividend?
What happens when there is a zero in our dividend? None of these questions
are questions we can answer simply by looking at Costello’s proof.

Before reading the next section, make a guess at what you think the answer
to these questions should be, and try the following exercise. The given quotients
are in agreement with how we decide to answer the above questions in the
remainder of this paper, but we encourage the reader to compare them with
the answers they get under their own chosen conventions. The fact that the
answers depend on one’s conventions underscores the importance of the careful
definitions in the following section.

Exercise. Replicate Costello’s division steps to “prove” the following;:
(a) 16 -4=13 (c) 396 +3 =132

(b) 65+5=112 (d) 30+2=105

2 From an example to an algorithm

In order to adapt Costello’s process into an algorithm, we need to define two
operations: concatenation and remainder.

2.1 Concatenation

Informally, concatenation is simply the “sticking” of two numbers together. For
example, the concatenation of 1 with 2 is 12. However, for our purposes we will
define concatenation more rigorously.

The issue is that the representation of a number in base 10 is not unique. For
example, 1 = 01 = 001. Fortunately, for any natural number, the representation
of a number is unique up to leading zeroes. This motivates the following defi-
nition: Throughout this paper, take N to be the nonnegative integers (that is,
include 0). For n € N, its minimal representation is its unique expression in
base 10 with no leading zeros. We will usually write the minimal representation
of a number n as a string

n=ning...n (1)



where n; € {0,1,...,9} for 1 < j <[, and if n # 0 then n; # 0. Let £(n),
called the length of n be the number of digits in the minimal representation of
n. That is, given the minimal representation of n as in (1), we define £(n) := .

Additionally, we adopt the convention that 0 has minimal representation
consisting of a single zero, and, by consequence, that ¢(0) = 1.

Now that we have unique representations of each number, we can rigorously
define concatenation as a binary operation on the set N. Given two numbers
a,b € N, we first take their minimal representations:

a=aiay...a;—1a; and b = biby...by_1by,.

We then define the concatenation of a with b, denoted a & b, to be the
number ¢ with base 10 expansion

C = a1a2...al,1alb1b2...bm,1bm. (2)

Note that because we concatenated the unique minimal expressions for a and
b, the number a @ b is well defined. However, while our inputs were both
represented in their minimal representation, the string we obtain in (2) may not
be the minimal representation for c¢. Specifically, there may be a leading zero if
a=0.

Exercise. Use the above definition to compute the following:
(ad) 1®23 (bi) 1®0

(aii) 231 (bii) 0@ 1

2.2 Remainders

In contrast to the complexity of concatenation, the remainder operation can be
expressed much more simply. Given two numbers a,n € N with n # 0, define
the remainder operation (of a by n), denoted a % n, to be the remainder
upon dividing a by n.

2.3 Costello division

With these additional operations, we can define an algorithm for Costello di-
vision. As discussed earlier, we only have a single example to work from to
determine what this algorithm should look like, and so there are a number of
reasonable ways of defining this operation that all affirm Costello’s first proof.*

The following is our choice for the algorithm. The guiding principle we fol-
lowed was to modify the process of (standard) long division as little as possible,
while still accounting for the errors in Costello’s original proof. We have chosen
to define this algorithm only for single-digit divisors, due to Costello’s example
following a digit-by-digit process. We discuss divisors having more digits and
other potential extensions to the algorithm in our conclusion.

4In fact, we began our research by working with a slightly different algorithm, which treated
any zeroes in the dividend by simply placing them in the remainder. This resulted in some
very strange properties.



Definition (Costello division). Let m € N and n € {1,...,9}. We denote the
Costello division of m by n as m @ n. The output of Costello division is a
pair, (g,7), where we call ¢ the quotient (under Costello division), and r
the remainder (under Costello division).

Costello division is defined by first representing m in terms of its minimal
representation as mims ...my, then carrying out the following process.

Algorithm 1 Costello division
Require: m e N, n e {1,...,9}
g+ 0,70
for 1 <j<ldo
if m; > n or mj =0 then © Componentwise Division Step (on the jth
digit)

¢—q® [T
rr®(mj; %n)
else
r<rom;
end if
if > n then > Standard Division Step (on the jth digit)
¢<q® [7]
r<r%mn > The jth-step remainder.
(See the subsection “Intermediate remainders.”)
end if
end for
return (q,r)

Let’s look at 28 @ 7, just to confirm that this algorithm does align with
Costello’s original proof.

Example (28 @ 7 = (13,0)). Take m =28 and n = 7. Set ¢ = r = 0. We then
start the process in our for-loop. Note that £(28) = 2, so we only repeat the
loop twice.

We consider the componentwise division step on the first digit, 2. Since
2 < 7and 2 # 0, we set

r<—rd&m; =0p2=2.

Then we consider the standard division step. Since 2 < 7, we do nothing.
We then return to the top of our for-loop. We consider the componentwise
step on the second digit, 8. Since 8 > 7, we set

7
rr®(ms%n)=208%7) =2®1=21.

qeq@[TJ:O@{SJ —0&1=1, and



Now we consider the standard division step. Since 21 > 7, we set

21
7
r—r%n=21%17=0.

¢qo| J=1@{ J:1®3:13,and

r
n

We then exit our for-loop, and return (13,0). Therefore 28 Costello-divided by
7 is 13, with a remainder of 0. Indeed, our algorithm does align with Costello’s
original proof that 7 x 13 = 28.

Since this algorithm produces an ordered pair as its output (to account for
both the quotient and remainder), it will be useful to have specific notation
for when we only want one of the two components. More specifically, we need
notation for the remainder under Costello division. So, given m € N/n €
{1,...,9}, let m@n = (g,r). Then define the Costello remainder operation

as

m@)n = r.

With these definitions in hand, we can now begin to analyze the algorithm,
to see if we can glean any insights about its properties.

3 From an algorithm to an insight

We first looked at a table of values, to see if any patterns emerged. Table 1 is a
smaller version of that table, showing the quotients and remainders for Costello
division with dividends ranging between 10 and 20 for every possible divisor.

The table of remainders has a very striking pattern: the remainders under
Costello division appear to match the remainders under standard division. To
prove this, we will need to analyze Costello division, and hence the remainder
and concatenation operations, more closely.

In this section, we gather some useful facts about the ways that concatena-
tion and remainders interact, with the ultimate goal of turning this observation
into a formal proof.

3.1 Reformulating operations

We will want some slightly easier-to-handle versions of our concatenation and
remainder operations. First, note that the concatenation a & b can be thought
of as first appending ¢(b) zeros to a, then summing the result with b. This
observation leads to the following fact.

Fact 1 (Closed Form of Concatenation). The concatenation of two numbers,
a,b € N, can be expressed as

a®b=100gq + 0.



Table 1: Two tables, the bottom of remainders under Costello division and the
top of quotients under Costello division. Notice that each row of the remainders
table follows a repeating pattern.

Hq‘lo‘ll‘12‘13‘14‘15‘16‘17‘18‘19‘20”
1[10[11 121314151617 1819 20
2 5 5 |15|15|25 (253535 [45 457110
3133413131423 [23[24[33] 6
al 212133 12]12]13[13]22]22] 5
sl 222122 12]12]12]12]12] 4
6l 1122221111 ]12]12] 3
7111222111 ]11]2
gl 11111122 11]11]2
ol 111111 [1][1]2]11]2

Hr‘lo‘ll‘12‘13‘14‘15‘16‘17‘18‘19‘20”
1foJoJoJoJoJoJoJoJoJ]oT]oOoO
2l ol 1]lol1]lol1]lol1]o0]1]oO
31 ]2lol1l2lofl1]l2]0]17]2
al213lol1]2[3[o[1]2]3]0
sl ol 12340123470
6l 45012 [3[4][5]0]1]2
71314516l o0o 1234516
gl 23456 7]0]1][2]3]4
ol 1123456 7][8]0]1]2

An important mathematical tool in studying (standard) division is modular
arithmetic, and it will also help us here. The following fact is an equivalent char-
acterization to our definition of the remainder operation, this time formulated
in the language of modular arithmetic.

Fact 2 (Remainders in Modular Arithmetic). Given two numbers a,n € N, the
remainder a % n is the smallest a’ € N such that a = o’ mod n.

Now, because addition and multiplication are well defined working modulo
n, one can use Facts 1 and 2 to discover the following fact:

Fact 3 (Concatenation mod n). Let a,b € N and n € N. If {(b % n) = £(b),
then

(a@b) %on=((a%n)®@®d%n)) % n.

In short, so long as the remainder b % n has the same length as b, the
concatenation and remainder operations play nicely together. In particular,
this is true when b and n are both single-digit numbers.



Example. Let a =12, b=9, and n = 7. Then

(a®b) %n=(1209) % 7=129% 7 =3,
while

(@%n)®b%n)=06@2) %T=>52%T7=3.

3.2 Intermediate remainders

The last tools we need are characterizations of intermediate steps of our al-
gorithm, specifically with regard to remainders. Let m € N,n € {1,...,9}.
Additionally, let 1 < j <[ = £(m). Define 1"7(7]1)” to be the jth step remainder
of m @ n, where r,(,{)n is the value of our remainder after the standard division
step of Algorithm 1 corresponding to the jth digit of m. In other words, this is
the value of our remainder after the jth iteration of the for-loop in Algorithm 1
(We have left a comment in the algorithm to point you to the right place).

When the context of our division is clear, we omit the subscript m,n from
the jth step remainder notation, instead writing simply 7).

Additionally, note that when j = [, the jth step remainder is precisely the
final remainder we produce in our algorithm. That is,

r,(fl)n = mn.

We also define, in alignment with its initial value at the beginning of our
algorithm,
r .= 0.

We will also consider the truncation of a number’s minimal representation.
This definition may seem a bit strange on its own, but consider this definition
as a way to “reverse” the operation of concatenation.’ Let m € N, and denote
the minimal representation of m as my ...my;, Now let 1 < j < [. Define the
j-truncated representation of m, denoted m), to be the number with base
10 representation

mY) = mims.. .M.

That is, m) is the number represented by the string of the leftmost j digits of
m.

By carefully examining Algorithm 1, one can discover the following fact that
relates truncated representations and intermediate remainders.

Fact 4 (Remainders of Truncations). Let m € N,n € {1,...,9}. Then, for all
1 <35 <{(m), we have that

i @ = 18D,
5We explicitly avoid using the word “inverse,” since concatenation is not a bijective oper-
ation. E.g. 1423 =126 3 = 123.




Finally, one can similarly discover the following fact by carefully considering
the steps in Algorithm 1.

Fact 5 (Final-step Remainder). Let m € N,n € {1,...,9}. Denote m in its
minimal representation as my ... m;. Then,

m@n =" o (m % n) % n.

4 From an insight to a theorem

These five facts are enough to codify our intuition about the remainders under
Costello division into a formal theorem. We then provide a proof; we highly
encourage the reader to first attempt the proof on their own, taking advantage
of Facts 3-5.

Theorem 1 (Costello Remainder Theorem). Let m € N and n € {1,...,9}.

Then,
m@n=m % n.

That is, the remainder under Costello division is precisely the remainder under
standard division.

Proof. We prove our result by induction on the length ¢(m) = of our dividend.

e (Base Case). Let n € {1,...,9}. Let m € N such that ¢(m) = 1. Then
m has minimal representation mj, where m; = m. We can now perform
our algorithm. Set ¢ = r = 0. Since ¢(m) = 1, our for-loop reduces to
checking the componentwise and standard division steps once.

Consider the componentwise step on the first digit, m,. First consider the
case where my > n or m; = 0. In this case, set
m m m
q+—q>d LfIJ =0& {flJ = L—IJ and
n n n
r—r®(m; %n)=0®(m %n)=ms %n.

Then we consider the standard division step. Since mi; % n < n, nothing
happens, and we exit our for-loop, returning (L%J ,mi1 % n). Since my; =

m, we have that m @) n =m; % n=m % n.

Alternatively, consider the case where 0 # my < n. In which case, during
the componentwise division step, we set

r<—ré&m=0®dm; =my =m.

Then we consider the standard division step. Since r = m = m; < n,
nothing happens, and we exit our for-loop, returning (0,m). However,
note that if m; < n, then m < n. Therefore mn =m =m % n. Thus
we have proved the base case.



e (Inductive Step). Let n € {1,...,9}. Assume that for all k¥ € N such that
l(k) =1—1, we have that

k@n =k %n.

Now, consider an arbitrary m € N such that ¢(m) = I. We know by Fact
5 that

m@n=r""Y e (m; % n)) % n.
We then have by Fact 4 that r(¢—1) = m(-1 n, SO

m@n = (M"Y @ n)® (m; % n)) % n.

Now, noting that £(m(~Y) =1 — 1, our inductive hypothesis states that
m=D @) n =m=Y % n, which we substitute as well:

m@n=((m"Y % n)® (m; % n)) % n.

We can then apply Fact 3, since ¢(m;) = 1 = £(m; % n). We therefore
find that

m@n = ((m"Y % n)® (m; % n)) % n
=m"YVem) %n

=m % n,

which proves our inductive step, and therefore, our main result.

O

5 From mathematical research to more mathe-
matical research

In spite of its humorous origins, it is clear that there is some level of consis-
tency behind Costello’s division mistakes. Theorem 1 is particularly compelling
in this regard, since it shows an instance of equivalence between standard di-
vision and Costello division—in many ways a surprising result. There is little
indication from Costello’s original proof (aside from the fact that it, in some
sense, “works”) that there should be any consistency arising from this example-
turned-algorithm.

There are a number of questions still left unanswered. One immediate ques-
tion that emerges is how one might go about further extending the definition of
Costello division to include divisors with more than one digit. Unfortunately,
it’s quite hard to determine what that should look like from Costello’s exam-
ple, since 7 has length 1. We’ve considered multiple interpretations: one is to
consider “clumps” of digits in the dividend that have the same length as the
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divisor, and perform the componentwise step on those clumps. Another blunt
option is that Costello division should still attempt to consider single digits in
the component wise step, but this results in only ever considering the standard
division step when the divisor has more than 1 digit.

The third option we considered—which we find the most compelling—is to
circumvent the problem of multi-digit divisors by performing the operation in
larger bases. For example, in hexadecimal (base 16), the base 10 number 12 has
the hexidecimal representation C, which is a single digit. The definitions and
theorems in this paper are formulated in base 10 specifically, but many extend
very easily if the divisor is of length 1 in some other base. Potential study
of Costello division in different bases would involve rigorously defining these
operations in other bases, and potentially exploring any options for interpolation
between Costello division in different bases. We think bases of the form 2" may
be particularly interesting, and may be of special interest to any readers with
a background in computer science, as Theorem 1 may then allow for Costello
Division to become a compelling choice of algorithm for finding remainders of a
number.

One final and important question left unanswered is the question of inver-
sion, since this would be the resolution of one of the original questions: “Could
Costello have used different numbers?” Given a fixed divisor, standard division
by that divisor has a well defined inverse operation: simply multiply the quo-
tient by that divisor and add the remainder. However, it is not immediately
clear whether or not Costello division by a fixed divisor is invertible. We note
that Lou Costello does provide second and third proofs that 7 x 13 = 28, with
multiplication and addition. However, neither of these operations give (in gen-
eral) inverses to Costello division. For example, we state without proof that if
your fixed divisor is 1, then Costello division produces the true quotient, but
Costello multiplication by the fixed divisor 1 does not return the original value.
For example, 13 @ 1 = (13,0), but 13 ® 1 + 0 = 4, where ® represents Costello
multiplication.® Finding an inverse operation to Costello division by a fixed
divisor thus is a nontrivial problem. We conjecture that Costello division by a
fixed divisor (other than 1) has an inverse, at least for dividends with specific
properties.

Additionally, we were presented the following conjecture by a reviewer:

Conjecture. Let m € N and n € {1,...,9}. Suppose that m @ n = (g,7).
Then,
g=|m/n|] mod?9. (3)

That is, the Costello quotient is equal to the usual quotient mod 9.
Ultimately, we believe these unanswered questions provide directions for
interesting (and fun!) further work to be done on this topic.

5We omit a full definition of Costello multiplication here. It is highly related to an almost
“expected” mistake of those learning multiplication for the first time, where the placing of
the digits is ignored and each digit is treated as if it were in the ones place. For more details,
take a look at the videos of Costello’s original work.
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